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Mobile opportunistic networking is a promising technology that can supplement existing cellular and WiFi
networks to provide desirable services for smart and connected communities. Message routing is the most
compelling challenge in mobile opportunistic networks due to the lack of contemporaneous end-to-end paths
and the resource constraints at mobile devices. To improve the probability of successful message delivery,
most existing routing schemes use the past contact history to predict future contacts for message forwarding,
and exploit message replication and redundancy for multicopy routing. However, most existing prediction-
based routing schemes simply use the average pairwise contact probability as the routing metric and ne-
glect the benefits of exploring fine-grained contact information such as pairwise repeated contact patterns
to improve the accuracy of predicting future contacts. Moreover, there is no efficient mechanism that can
adaptively control message replication in a decentralized manner to achieve both high probability of suc-
cessful message delivery and low message overhead. To address these problems, we present FGAR, a routing
protocol designed for mobile opportunistic networks by leveraging fine-grained contact characterization and
adaptive message replication. In FGAR, contact history is characterized in a fine-grained manner with timing
information using a sliding window mechanism, and future contacts are predicted based on the fine-grained
contact information, thereby improving the accuracy of contact prediction. We further design an efficient
message replication scheme in which message replication is controlled in a fully decentralized manner by
taking into account the expected message delivery probability, the replication history, and the quality of the
encountered device. A replica is generated only when it is necessary to fulfill the expected message delivery
probability. We evaluate our scheme through trace-driven simulations, and the simulation results show that
FGAR outperforms existing schemes. In comparison with PROPHET, FGAR can achieve more than 20% im-
provement on average on successful message delivery, whereas the message overhead has been reduced by
a factor up to 15.
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1 INTRODUCTION

The smart and connected community is an emerging area that presents a new way of designing,
building, and managing communities based on information and communications technology
(ICT), especially wireless and mobile communications, to achieve social, economic, and envi-
ronmental sustainability. Everything in smart communities is expected to be connected and
intelligent, enabling the delivery of services and information sharing from safety and security
to healthcare, education, and entertainment. In 2009, Cisco launched the global initiative for
Smart+Connected Communities using the network as the platform to transform physical com-
munities to connected communities run on networked information [8]. It is highlighted that the
foundation for future communities is the network and the information it carries [7]. Hence, the
design and development of intelligent networking and communication technologies to weave
together people, service, community assets, and information have become the key challenges in
realizing smart and connected communities.

Although the past decade has witnessed substantial growth in access to ICTs, the deployment
of ICT infrastructures and technologies is still lagging behind the ever-growing demands on any-
where and anytime Internet connectivity, especially for rural communities. According to the 2016
edition of the Measuring the Information Society (MIS) report [13], only around 40% of the world’s
population has access to the Internet. Even though the advances in cellular and WiFi networks have
increased the Internet connectivity, these technologies alone are not sufficient to meet the require-
ments for smart and connected communities. Cellular networks can provide extensive coverage,
but most mobile users are on plans with no or limited mobile data quota. Moreover, data com-
munication through 3G/4G networks is still not cheap, especially for accessing multimedia data.
Although WiFi networks can offer cheap wireless Internet access, they suffer from the drawback
of limited coverage.

Mobile opportunistic networking, an extension of the mobile ad hoc network (MANET) by ex-
ploiting short-range wireless technologies such as WiFi Direct and Bluetooth for device-to-device
communication, is a promising technology that supplements the existing cellular and WiFi net-
works to provide desirable service for smart and connected communities. A key feature of the
mobile opportunistic network is that it is self-organizing without any infrastructure support, and
devices communicate opportunistically upon encountering each other. When two devices come
into the communication range of each other (we call it contact hereafter), they can share the car-
ried data objects on the fly. In the past decade, mobile devices such as smartphones and tablets
have become very popular. Almost all mobile devices have Bluetooth radios, and most of the re-
cent smartphones support both Bluetooth and WiFi Direct for device-to-device communication.
An opportunistic network composed of a large number of mobile devices together with the existing
infrastructure-based cellular and WiFi networks forms a powerful network platform for connected
communities and enables many application scenarios. For example, residents in remote areas can
access email and Web resources by using public buses as data mules [26]. In vehicular networks,
a vehicle can share traffic information upon encountering other vehicles and can seek help from
other vehicles for transmitting data to roadside units when it is out of the communication range of
the roadside units [3]. In earthquake disaster recovery, where most traditional communications can
be interrupted, mobile opportunistic networks can be used to share rescue information between
nearby smartphones [17].

Due to high mobility and short wireless transmission range, mobile opportunistic networks do
not have contemporaneous end-to-end paths for message delivery, which makes routing in mobile
opportunistic networks a challenging problem. Since mobile devices are carried by human beings
and move around, contacts between devices in mobile opportunistic networks usually exhibit a
high degree of repetition due to the daily scheduled routines of the persons who carry these devices
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[11]. Hence, most existing routing schemes use the history of the previous contacts to predict the
future contacts. In most prediction-based routing schemes such as PROPHET [21], MaxProp [3],
and PER [32], the contact history for each pair of devices is compressed into a piece of coarse-
grained information called encounter predictability that is used as the routing metric. However,
this coarse-grained information represents the long-term average contact probability instead of
the probability that two devices will contact during the lifetime of a message. For example, let’s say
two devices a and b frequently contact one another during the day but not at night. Even though
the encounter predictability between a and b is high, device a is not good at relaying any message
that must be delivered to device b during the night. Hence, the lack of fine-grained information
such as contact time will undermine the accuracy of predicting future contacts and consequently
degrade the routing performance.

To enhance the success probability of message delivery, most existing routing protocols for
mobile opportunistic networks are designed based on data replication and data redundancy [3, 21,
30, 33]. For instance, multiple copies (also called message replicas) per message are generated and
spread to the network with the expectation that at least one replica will successfully reach the
destination. In PROPHET [21], a message replica is generated for any encountered device that has
a larger probability to contact the message’s destination. In Spray and Wait [28], a fixed number of
message replicas per message are generated and spread to the network. Spreading a small number
of replicas may not achieve high message delivery reliability, but overspreading may also degrade
routing performance due to frequent message dropping caused by message buffer overflow. A key
challenge for replication-based routing schemes is to determine the optimal number of replicas
per message to be generated and spread.

Novelty and contributions. In this article, we present FGAR, a new routing scheme for mobile
opportunistic networks by exploiting the following two mechanisms: (1) Fine-Grained contact
characterization and (2) Adaptive message Replication.

To the best of our knowledge, 3R [30] is the only protocol that employs fine-grained contact
history to predict future contacts. However, 3R simply records the fine-grained information of each
contact (e.g., contact starting and ending time) locally at each device, which is not memory efficient,
especially for devices that have a high frequency for contacting others. In this article, we propose a
novel sliding window mechanism to extract fine-grained information from the contact history and
store the characterized contact information using a bit matrix data structure in a memory-efficient
way. Based on the bit matrix structure, the probability that two devices will encounter within a
given time period (e.g., the lifetime of a message) can be effectively estimated, and this probability
is more accurate than the long-term average contact probability for contact prediction. Moreover,
the sliding window mechanism can quickly respond to the changes on contact patterns by timely
incorporation of new contact information and eliminating outdated history data for predicting
future contacts.

Existing replication-based routing schemes such as PROPHET and Spray and Wait cannot adap-
tively control message replications and thus cannot avoid the problem of over- or underspreading
message replicas. We propose a novel decentralized mechanism to adaptively control message
replication based on the expected success probability on message delivery, the replication history,
and the quality of the encountered device. A replica is generated only when it is needed to fulfill
the expected success probability on message delivery, thereby avoiding over- and underspreading
message replicas.

We evaluated the performance of FGAR through trace-driven simulations. Simulation results
show that FGAR can achieve much higher message delivery reliability than existing schemes
with very low message overhead. In comparison with 3R, the percentage of successfully delivered
messages has been improved by 21% on average, whereas the memory requirement has been
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significantly reduced. In comparison with PROPHET, FGAR achieves 20% improvement on
successful message delivery on average, whereas the message overhead has been reduced by a
factor up to 15.

The rest of this article is organized as follows. Section 2 summarizes the related work. Section 3
presents our motivations. Section 4 uses opportunistic mobile data offloading as a case study
to explain the benefits of our scheme. Section 5 illustrates the representation of fine-grained
contact history and contact prediction. Section 6 presents our message replication and forwarding
scheme. Section 7 evaluates the performance of our scheme through trace-driven simulations.
Section 8 concludes the article and discusses future work.

2 RELATED WORK

Mobile opportunistic networks have been extensively studied in recent years for many applica-
tions, such as vehicular ad hoc networking [3], mobile data offloading [12, 18], remote animal
monitoring [15], disaster recovery [17], social network analysis [25, 34], and community detection
[31]. Research on message forwarding in opportunistic networks originates from Epidemic rout-
ing [29], in which each message is flooded to all reachable devices in the network. Epidemic can
achieve the best message delivery in scenarios with massive message buffers but does not perform
well when devices have limited resources. Hence, Epidemic is commonly used as a benchmark to
evaluate the performance of new routing protocols. To avoid blind flooding, controlled-flooding
protocols have been proposed. PROPHET, one of the few routing protocols that have an IETF draft
[20], avoids blind flooding by pruning the Epidemic distribution tree. This pruning is done by al-
lowing a device to send a message replica to an encountered device only when the encountered
device has a larger probability than itself to contact the destination. Delegation forwarding [6] is
very similar to PROPHET except each message is replicated and forwarded based on the maximum
quality observed so far instead of only the quality of the current encountered device. Spray and
Wait [28] controls message overhead by limiting the number of message replicas generated in the
spraying phase and then relies on direct contact to deliver each replica to the destination. The
protocols proposed in [1] and [16] leverage utility values to manage the forwarding of each mes-
sage and its replicas. Rather than directly optimizing the delivery probability, they focus more on
minimizing the average delivery delay based on the utility value. Additionally, the utility value can
be employed to drop packets when the memory allocated for buffering message is full. The OOF
protocol proposed in Liu and Wu [22] simply limits the number of forwarding hops for message
transmission, and a new metric taking into account both the remaining hop count and the residual
time-to-live is proposed for message forwarding. With a fixed number of message copies, OOF can
maximize the message delivery probability. Different from OOF, our scheme can adaptively con-
trol the number of message replicas to achieve a high percentage of successful message deliveries
with low message overhead.

Recent studies show that contacts between devices in opportunistic networks, especially for
community-based applications, commonly exhibit some repeating patterns. Discovering and ex-
ploiting these repeating patterns can greatly improve successful message delivery. Zhang et al. [33]
studied bus-based delay-tolerant networks and observed that the intercontact time aggregated at
a route level exhibit periodic behavior. Moon and Helmy [23] analyzed the periodicity in the en-
counter pattern by using power spectral analysis. It was observed that devices with low encounter
frequency show strong periodicity. Predict and Relay (PER) [32] takes into account the contact
time and location information, and exploits a time-homogeneous semi-Markov process model to
represent device mobility as transitions between landmarks. Gao et al. [10] exploited transient
social contact patterns for message forwarding.
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Fig. 1. Contacts between two randomly chosen devices in the Cambridge, MIT Reality, and UMassDieselNet
traces.

Some studies have used the dynamic connection status for contact prediction. The schemes pro-
posed in Vu et al. [30] and Jain et al. [14] use the information learned from each contact to compute
the shortest path between pairwise devices for message routing. Chen and Shen [5] construct a
fully connected distributed social map for message routing. The scheme proposed in the work of
Li et al. [19] forms several communities to classify devices into different groups, and messages
are propagated to the appropriate community in which destinations are located. The schemes in
the work of Boldrini et al. [2], Musolesi and Mascolo [24], and Nguyen and Giordano [25] record
the context information to summarize the social relationships of users. The context information
includes the name, address, organization, and so on. Each attribute in the context has different de-
gree of impact on the future contact prediction based on its associated weight. The message routing
decision is made based on the likelihood of the context between pairwise devices. The higher the
likelihood, the closer the message to its destination. However, it is a concern that such complicated
context structure and contents can occupy too much memory for mobile devices, especially for a
large population community with numerous numbers of frequently contacted devices. In addition,
the lack of message replication control makes them suffer from a relative high message overhead.

To the best of our knowledge, 3R [30] is the only routing protocol using fine-grained history
for contact prediction. In 3R, previous contacts are classified and maintained according to the day
(weekday/weekend) and the time slot in which they occurred. Messages are forwarded based on
the fine-grained contact information. However, the past contacts are stored directly at each device
in a database, which is not storage efficient. Moreover, 3R uses only a single message copy and
cannot achieve the best message delivery reliability.

3 MOTIVATIONS
3.1 Fine-Grained Contact Characterization

Figure 1 shows the pairwise contacts between two active devices randomly chosen from three data
traces: Cambridge [27], MIT Reality [9], and UMass DieselNet [4].

It can be seen that most contacts occurred roughly in the same period of a day. This repeat-
ing pattern is useful for predicting future contacts. However, most existing schemes do not fully
take this advantage. In PROPHET, when two devices a and b contact, they update their encounter
predictability, denoted by P(a, b), as follows:

P(a,b) = Pald(a’ b) + (1 =6 = Pora(a, b)) * Pencounter (1)

where P,;4(a, b) is the encounter predictability before the current contact occurs, Peycounter 1S a
scaling factor at which the probability increases upon encounters, and J is a small positive value to
set an upper bound on P(a, b) [20]. Forwarding messages based on this metric is simple but may not
be efficient due to the inaccuracy of contact probability estimation, as illustrated by the following
example. As shown in Figure 1, the two devices a and b in the Cambridge trace frequently made
contact between 11 am and 6 pm on a daily basis, and P(a, b) will be large (e.g., 0.9) according to
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Equation (1). Suppose that device a generates a message at 8 pm and needs to send it to device b in
12 hours. Device a only knows that it has a large probability of contacting device b but is not aware
that the two devices never made contact between 8 pm and 8 am in the past. Since P(a, b) is high,
the probability for device a to spray a replica to another encountered device is small. However,
if device a has the timing information of each previous contact, it can estimate the probability
that two devices will encounter in the lifetime of the message, thereby improving the accuracy of
contact prediction.

In addition, the pairwise device contact patterns may change over time, and these changes must
be reflected in a timely manner to improve the accuracy of future contact prediction. In PRoPHET,
if devices a and b do not encounter during a time interval, P(a, b) is reduced using the following
aging mechanism:

P(a,b) = Pyjg(a,b) = AK/2, (2)

where A € [0, 1] is the aging constant, § is the length of a time unit, and K is the amount of time
elapsed since the last time P(a, b) was aged [20]. However, the performance of the aging mecha-
nism heavily depends on the parameters A and &, as an improper setting will cause either slow or
fast aging. Moreover, all devices use the same setting for A and §, and it is hard to choose a proper
setting since different devices may exhibit different behaviors.

3.2 Adaptive Message Replication

A key challenge in designing routing protocols for mobile opportunistic networks is to achieve
high probability of successful message delivery with low message overhead, as devices are usually
resource constrained. To illustrate this issue, we carried out trace-driven simulations to evalu-
ate three representative schemes: Epidemic, PROPHET, and 3R. In our simulation, we used the
Cambridge data trace, which is a trace of Bluetooth sightings by graduate students carrying small
devices (iMotes) for 6 days, and we duplicated the original trace to expand it to 1 month. Messages
were generated with random sources and destinations. Each message has a lifetime randomly cho-
sen from 2 hours to 1 week, and the message size varies from 2k bytes to 100k bytes The three
schemes were evaluated using the same message trace and compared using the following two
metrics:

(1) Average message delivery rate: Ratio of the number of delivered messages to the number
of created messages

(2) Average message overhead: Ratio of the number of replicas to the number of created
messages.

We carried out simulations with different settings on the message buffer size at each device. A
message can be dropped due to either deadline expiration or buffer overflow. For the latter case,
messages are dropped based on the first-in-first-out (FIFO) policy.

Figures 2 and 3 show the average message delivery rate and message overhead for the three
schemes with different settings on message buffer size, respectively. It can be seen that for unlim-
ited buffer size, Epidemic achieves the highest average message delivery rate (0.725) with extremely
high message overhead. The average message overhead is approximately 41, and 98.2% of the cre-
ated messages and replicas were dropped. PROPHET achieves an average message delivery rate of
0.669 with a significant drop on the number of replicated messages, but the message overhead still
remains high (approximately six replicas were generated per created message). It is worth noting
that 3R achieves an average message delivery rate of 0.67 with no message overhead. Even though
3R uses a single message copy, the average message delivery rate is not dropped too much, as it
uses fine-grained encounter information for contact prediction.
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It is also worth noting that for the scenarios with a message buffer size no larger than 2M bytes
per device, the average delivery rate achieved by Epidemic is even lower than PRoPHET and 3R.
This is because a large portion of the message replicas have to be dropped due to message buffer
overflow. Hence, message overhead has a big impact on the performance of a routing scheme in
resource-constrained mobile opportunistic networks. A single copy per message is not sufficient
to achieve a high message delivery rate, but the pruning mechanism in PRoPHET is too simple
and not efficient.

From Figures 2 and 3, it can be seen that a large portion of the replicated messages are not
helpful for improving the message delivery rate. Our motivation is to avoid the generation of
the unnecessary message replicas to achieve a high message delivery rate with very low message
overhead. Different from existing works, we aim to develop an efficient message replication scheme
in which each device can adaptively control the replication of the messages it carries. A replica is
generated only when it can contribute to the improvement of successful message delivery, thereby
avoiding over- and underspreading message replicas.

4 A CASE STUDY: OPPORTUNISTIC MOBILE DATA OFFLOADING

As discussed in previous sections, the message routing scheme developed in this article has many
application scenarios. In this section, we use opportunistic mobile data offloading as a case study
and explain how the proposed routing scheme can be used to deliver data originally targeted for
cellular networks using complementary short-range communication technologies such as Blue-
tooth and WiFi.

With the increasing popularity of mobile devices such as smartphones and tablets, the past few
years have witnessed a tremendous growth not only in the number of mobile users but also in the
demand for mobile Internet access. The explosive growth in mobile traffic, especially multimedia
data, will make the cellular networks overloaded and congested due to the limited network capac-
ity. Mobile data offloading is a promising technology to release the burden of cellular networks by
using complementary network technologies for delivering data originally targeted for cellular net-
works. There are two types of offloading: on-the-spot and delayed [18]. In on-the-spot offloading,
mobile devices simply switch to WiFi once WiFi connectivity is available, and most smartphones
already perform on-the-spot offloading by default. In delayed offloading, each data transfer is asso-
ciated with a deadline, and the device that requests the data transfer will first try other networks.
If the data transfer is not completed after the deadline, it will come back to use the cellular network
to complete the data transfer. As illustrated by the example given in Figure 4, Bob wants to send
10 pictures to his friend John, but they do not have to be available to John immediately. He opts to
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Fig. 5. Message replication and forwarding.

have them delivered within 6 hours if this will avoid any carrier charge. He first sends a text mes-
sage via cellular networks to inform John that he will send him 10 pictures in the following 6 hours
and asks John to confirm receipt of the pictures after the deadline. After 1 hour, Bob encounters
John’s colleague Alice and forwards a copy of the pictures to her, and hopes she will encounter
John in the following 5 hours to forward the pictures to John. After 3 hours, Bob has a chance to
connect to WiFi and also sends a copy of the pictures through WiFi to John. It is possible that John
received all pictures since he spent most of the time in his office with a connection to the Internet,
or that John received most pictures from Alice but one picture was not successfully transferred
due to the short contact. John informs Bob about the missing picture, and Bob resends it through
the cellular networks. Since data transfer in delay offloading heavily depends on the opportunistic
contacts between mobile devices or mobile devices and WiFi access points, delay offloading is also
called opportunistic mobile data offloading. A large portion of mobile data traffic, such as weather
forecasts, electronic newspapers, and movie trailers, does not have strict real-time constraints and
thereby is suitable to be offloaded to other networks. Many studies have been carried out to per-
form efficient opportunistic offloading to maximize the amount of offloaded data [12, 19].

The routing scheme developed in this article is for end-to-end message delivery and can be
used for opportunistic mobile data offloading. Each message is characterized by a source address,
a destination address, a delivery deadline, and an expected success probability of message delivery
imposed by either the user or the upper-layer application or set with a default value. For example,
avalue of 1 indicates that the message is expected to be reliably delivered to the destination within
its deadline. Each device uses a time-slotted sliding window to maintain the most recent contact
history, as shown in Figure 5. The sliding window is divided into slots with equal length (e.g.,
1 hour), and the length of the slots controls the granularity of the contact history. Each device
keeps track of the devices it contacted in each time slot. In this way, the encounter probability
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between any two devices in any time period can be estimated based on this fine-grained contact
history. As shown in Figure 5, if Bob decides to send the pictures to John at 8 am, the probability
for Bob to directly contact device a in the following 6 hours can be estimated using only the past
contacts occurring between 8 am and 2 pm, thereby improving the accuracy of contact prediction.

To reduce message overhead, message replication and forwarding in our scheme is driven by
the message’s expected success probability in a fully decentralized manner. Each message can gen-
erate multiple replicas, and each replica can further generate more replicas to fulfill the message’s
expected success probability. The expected success probability associated with each replica repre-
sents the accumulative success probability that is expected to be achieved by this replica and all of
its descendants that are either directly or indirectly generated based on this replica. When device
a that carries a replica encounters device b, device a stops spreading new replicas if the expected
success probability of the carried replica has been fulfilled; otherwise, it decides whether a new
replica needs to be forwarded to device b and how much success probability this new replica is
expected to achieve, based on the probability for device b to contact the message’s destination.

As illustrated in Figure 5, it is assumed that Bob expects to send the pictures to John in 6 hours
with an expected success probability of 0.9. After 1 hour, Bob encounters device a and learns that
device a has a probability of 0.8 to contact John. As the expected success probability of the original
message has not been fulfilled, Bob sends a replica to device a. The expected success probability for
this replica is set to 0.8, and the deadline is set to 5 hours from now. After 2 hours, Bob encounters
device b and sends another replica to device b. Since then, the expected success probability (0.9)
has been fulfilled, and Bob stops spreading more replicas to other encountered devices. As the
pairwise contact probabilities may change over time, each device needs to dynamically control
message replication. For example, device a did not encounter John in the following 3 hours and
generates another two replicas for devices c and d to help fulfill the expected success probability of
0.8. Thus, each device adaptively controls the generation of message replicas and route messages
in a multihop manner, and there is no constraint on the number of hops for a message to reach
the destination.

5 CONTACT CHARACTERIZATION AND PREDICTION
5.1 Contact Detection and Representation

Each device needs to maintain the fine-grained information of past contacts, such as the address of
the encountered device and the contact time. However, directly recording this information is not
efficient in terms of both storage and retrieval speed, as most devices are resource constrained, and
a device may encounter hundreds of devices or even more. In our scheme, we use the bit matrix
data structure to characterize the contacts occurring in the sliding window. Let L,, denote the
length of the time-slotted sliding window, and let L, represent the length of each time slot in the
window. Each device a maintains a bit matrix, denoted by M,, to represent the recent contacts
occurring between device a and its encountered devices during the time period covered by the
sliding window. M, is defined as

1, if max?* ¥, (i) > a or 375 1¥, (i) > B,

0, otherwise,

Ma[b][k] = { ®3)
where nj is the number of contacts occurring between a and b in time slot k, and lsb(i) is the
contact duration for the i*" contact. M,[b][k] is marked to 1 only when there is at least one
contact in slot k with contact duration no smaller than a threshold « or the accumulative contact
time in time slot k is no smaller than a threshold . The reason for using two thresholds & and f is
to take into account the following scenario: any single contact in slot k is not long enough for the
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two devices to transfer all messages that need to be exchanged. However, the two devices contact
several times in slot k, and the aggregated contact time is long enough to exchange messages. This
eliminates instantaneous contacts that are not helpful in message forwarding, as counting these
instantaneous contacts will lead to incorrect message forwarding decisions.

In mobile opportunistic networks, the contacts between devices are commonly detected through
periodic scanning. Several studies have been performed on energy-efficient probing in mobile op-
portunistic networks [35]. We assume that each device scans to discover neighbors every 6 seconds
(e.g., 60 seconds), and each scanning lasts for ¢ seconds (e.g., 10 seconds). Then the duration of each
contact (i.e., lsb(i) in Equation (3)) can be estimated based on this periodic scanning. As shown in
Figure 6, a contact may span multiple scanning periods. Since a contact may start and end at any
time in the (6 — ¢) seconds before the first time and after the last time it was detected, we estimate
the duration of the i** contact in the k*" slot as follows:

lsb(i) =rand(0,0 — ¢) + n; X 8 + rand(0, 0 — ¢), (4)

where n; is the number of consecutive scans in which b is discovered by a, and the two rand(0, 6 —
¢)s represent the amount of time the contact lasts before the first time and after the last time it
was detected, respectively.

Figure 7(a) gives an example of the bit matrix used to represent a sliding window with 672
slots (i.e., L,, = 4 weeks and L = 1 hour). As shown in Figure 7(a), each row represents the fine-
grained contact information for one encountered device within the sliding window. Each row is
implemented using a circular buffer data structure with size of L,,/L; bits, since it is well suited
for FIFO buffering without the need for element shuffling for insertion operations. Moreover, all
circular buffers at one device can share the same write pointer, as each column in the bit matrix
is updated together slot by slot. Thus, each device periodically scans, calculates the maximum and
accumulated contact time in the current slot, moves the writer pointer to the current slot, and then
updates the corresponding column in the bit matrix according to Equation (3). Additionally, data
in the circular buffers can be fast retrieved based on the matrix indexes. The storage requirement
based on bit matrix will be discussed in Section 7.3in comparison with other schemes.

5.2 Contact Prediction

Contacts between different devices may exhibit different patterns. For example, postgraduates
may have weekly meetings with supervisors, friends may have a weekly social gathering, and
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employees in the same department may frequently contact one another during workdays. The
sliding window mechanism and the bit matrix representation allow us to capture these patterns.

In the slotted sliding window, the history for 1 week is represented with 24X7 slots, then the
number of weeks that the window maintains for the contact history is as follows

=LW/24X7=LWXLS. 5)
Ly 168

We assume that n,, is an integer (i.e., L,, is divisible by 24><7) Given any slot k in the future, the slid-

ing window must contain n,, slots that correspond to the same period of a day as slot k but in dif-

ferent weeks. The index for such a slot m in its circular buffer is index(m) = (k — m X 168) mod LL—W,

where m € [0, n,, — 1] and mod is a modulo operation that returns a positive remainder. Let Pab (lsc)

denote the probability that devices a and b will contact in slot k. Then p,p (k) can be estimated

using the history characterized by these n,, slots as follows:

pus k) = Sy Wm X Ma[b)lindex(m)] ©

Ny

where wy, is the weight assigned to slot index(m). Different slots can have different weights. For
example, more recent slots can have larger weights to timely reflect changes on contact patterns.

Suppose that device a carries a message/replica that needs to be delivered to device b during
the time period [ts, t.]. Since t; and ¢, may appear at any time in a slot, the slot in which ¢ or ¢,
resides may not be fully covered by [ts, t.]. Let k be the slot in which ¢ resides. The number of
slots that [t, t.] covers, including the incomplete slots, can be computed as

1, te —ts + i < Ly,
s = {1 + [—(te_t5)££LS_'7k)'|, otherwise, @)
where 7y is the amount of time from the start of slot k until ¢;, which can be easily obtained
since each device needs to maintain the start time of the current slot to update the bit matrix. If
te —ts + Nk < L, ts and ¢, are in the same slot.

Let pap(ts, te) be the probability that device a can send the message directly to device b during
[ts, te]. According to Equation (6), the probability for two devices to contact in a slot is estimated
based on only the past contacts with contact time long enough for message transfer. Hence, the
message delivery fails only when there is no such contact during the period of [ts, t.]. We assume
that t; and ¢, of a contact occur in a slot with uniform distribution, and let k be the slot in which
ts resides. Thus, pgp (1, t.) can be estimated as follows:

Ppab (k) X te_ts > te —ts + N < Ly,
tS9te = _ s ) 8
part : { 1- Hf::s ! (1= pap(i)), otherwise. ®)

When ¢ and ¢, are in different slots, slot k is the first slot and slot k + ng — 1 is the last slot, and

Pab (k) x Bk i=k;
pab(i) = pab(l) i€ (k,k +ng — 1); (9)
Pab(k +ng = 1) x 1820 j = k4 ng — 1.

It can be seen that the distribution of t; and ¢, is used only for estimating the contact probability
in the incomplete slots. Thus, the distribution will not significantly influence the accuracy of the
estimation for p,p (ts, te) even if it is not uniform.
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ALGORITHM 1: Replication and Forwarding at Sender

/* Upon encountering device b: %/

1 for each message m in a’s buffer do
2 if Dest,, == b then

3 Forward message m to device b;

4 Delete message m;

5 else

6 | Add < IDp, Destm, Trn, ym > to SVa;

7 Send SV, to device b;

/* Upon receiving ACK for SV,: */
8 for each < IDy,, pm > in ACK do
9 case Py, (k) < Epy&pm = Em
10 LForward message m to b;
1 case Py, (k) < Ep,&pm < Em
12 LGenerate a replica of m and forward it to b;

13 Update P,, (k);

14 case Py, (k) > Ep&pm > p,
15 LForward message m to b;

6 MESSAGE REPLICATION AND ROUTING
6.1 Message Replication and Forwarding

Each message or replica m has a lifetime T}, and an expected success probability E,,, where E,, is
the accumulative success probability to be achieved by this message/replica and all other replicas
that are either directly or indirectly generated based on m. Based on E,,, the device that carries m
will decide how many replicas should be generated to fulfill E,,,. Suppose that k replicas have been
generated and forwarded to the devices inF,, = {f1, f2,..., fk}, and the expected success proba-
bilities to be fulfilled by these k replicas and their descendants are given in P,,, = {(EL ,E? ..., EF ).
The success probability that is expected to be achieved after generating these k replicas, denoted
by P, (k), can be computed as follows:

(1-E},), (10)

=

Pn(k) =1-
i=0

where E% = p? is the probability of delivering m from the device that carries m directly to the
destination. Note that the computation of P, (k) does not require the maintenance of either F,,
or P,,, since the production part of Equation (10) is the probability that all replicas failed to reach
the destination, which can be computed incrementally upon the generation of each replica. If
P, (k) > E,,, the device that carries m will stop generating more replicas.

Algorithms 1 and 2 give the pseudocode for message replication and forwarding at sender
(device a) and receiver (device b), respectively. When device a encounters device b, device a first
delivers all of its messages that are destined to device b. After that, device a checks how device b
can help deliver the other messages it carries. To do this, device a generates a summary vector SV,
that contains information of the undelivered messages in the format of < ID,,, Destp, Ty, Ym >,
where ID,, and Dest,, are the message ID and destination, T,, is the message lifetime, and y,,
is the minimum expected success probability for a replica of m that is used to eliminate bad
forwarders. After generating SV,, device a sends it to device b. Upon receiving SV,, for each

ACM Transactions on Internet Technology, Vol. 18, No. 1, Article 2. Publication date: October 2017.



Adaptive Message Routing and Replication in Mobile Opportunistic Networks 2:13

ALGORITHM 2: Replication and Forwarding at Receiver

/* Upon receiving SV, from device a: */
1 for each < ID,,, Destp, T, Ym > in SV, do

2 | if device b carries a replica with 1D, then

3 LContinue;

4 |else

5 Calculate pppesy, according to Equation (8).

6 ifﬁbDestm > Ym then

7 LAdd < IDm, pvDest,, > to the ACK message;

s Send ACK to device a;

< IDy,, Destpy, Ty, ym >, device b will check if it has already carried a replica with ID,,. If not,
device b calculates the probability for itself to deliver a replica of m to the destination before the
deadline, denoted by pppest,,, according to Equation (8). If pppess,, = ¥Ym, it indicates that device b
is a good forwarder for m, and < IDp,, pppest,, > is added to the ACK message. In the end, device
b sends the ACK message to device a and informs which messages it chooses to help deliver. After
receiving the ACK message, for each < ID,,, p,, >, device a decides whether to forward message
m or send a replica of m to device b based on the following rules:

Rulel: If P, (k) < Epy & pm > Eu, device a directly forwards the message/replica m to device
b. This is because the expected success probability allocated for m has not been fulfilled,
but device b can achieve an expected success probability no smaller than E,, if it carries
m. Hence, there is no need to generate a new replica.

Rule2:1f P, (k) < Epy & pm < Ep, device a generates a new replica and sends it to device b. The
expected success probability for the new replica is the probability for device b to contact
the destination, and device a updates Py, (k).

Rule3:1f Py, (k) > Epy & pm > p,, device a forwards m to device b. This is because even though
the expected success probability E,, has been fulfilled, device b can provide higher deliv-
ery probability than device a.

Illustrating example. As shown in Figure 8(a), device a has a message to be delivered to
device d in 9 hours with an expected success probability of 0.9. The probability for device a
to send the message to device d through direct contact is 0.4. As shown in Figure 8(b), device
a encounters device ¢ after 1 hour and forwards a replica to device ¢ according to Rule2. The
expected success probability for this new replica is set to 0.8. After 2 hours, device a encoun-
ters device b and forwards it another replica. After that, the expected success probability for
the original message at device a has been fulfilled, and device a stops spreading replicas. As
shown in Figure 8(c), device b carries a replica and encounters device e, which has a larger
delivery probability (0.7) than b. According to Rule3, device b forwards the carried replica to
device e.

When two devices encounter, they will first update the expected success probability via direct
contact for each message they carry. It might happen that for a replica carried by device a,
the probability for device a to deliver the replica directly to its destination drops below the
replica’s expected success probability as time elapses. In this case, device a will resume message
replication and spread more replicas to fulfill the expected success probability. As illustrated
in Figure 8(d), device e carries a replica with an expected success probability of 0.5. but the
probability for device e to directly send the replica to device d drops to 0.3 after 1 hour. Thus,
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Fig. 8. lllustration of replication and forwarding.

device e spreads a new replica to device f to help fulfill the expected success probability of
0.5.

Even though the example given in Figure 8 only shows message routing for two or three hops,
there is no limitation on the length of the message routing chain. According to Rulel, a message or
replica can be forwarded to any encountered device that can fulfill the expected success probabil-
ity. According to Rule3, a message or replica can be forwarded to any encountered device that has
a larger delivery probability than the current device with no limitation on hop count. The genera-
tion of message replicas is adaptively controlled using Rule2 by taking into account the real-time
network conditions and the replication history.

6.2 Automatic Adjustment of Relay Selection Threshold y,,

In our scheme, each message replica m is associated with a parameter y,, for forwarder selection.
A large yn, prevents the sending of replicas to encountered devices with low message delivery
probability, which reduces message overhead but may not spread enough replicas to fulfill the
expected success probability. However, a small y,,, will lead to the generation of many replicas
to encountered devices with low message delivery probability, which will increase the message
overhead. Since each device in our scheme maintains only local information, it cannot decide
whether another device is a good forwarder for a certain message until it encounters that device.
Additionally, a device cannot predict whether the current encountered device is the best or if it
will encounter a better one later. Thus, we use the following scheme to dynamically adjust the
message forwarding threshold:

At
Y™ = min {yf,f" X g X i—;;,yo}, (1
where Al is the remaining lifetime for replica m, A?, is the success probability that is expected
to be fulfilled by the already generated replicas, and y, is an upper bound for y,,. It can be
seen that the smaller the Al , the smaller the y/¢" so that more replicas will be generated and
spread to more forwarders to fulfill the expected success probability. In the same way, the larger
the A?,, the larger the y/*" to ensure that only good forwarders are selected to reduce message

m
overhead.
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7 PERFORMANCE EVALUATION

In this section, we evaluate the performance of FGAR through trace-driven simulations. We first
investigate the impact of parameter setting on routing performance and then compare it to Epi-
demic, PRoPHET, 3R, and Spray and Wait in terms of average delivery rate, message overhead, and
memory requirement. We used the following three representative traces:

Cambridge [27]: This trace includes Bluetooth sightings by graduate students carrying iMotes
for 6 days and contains more than 200 devices. In our simulations, we extend it to 2 months by
duplicating the original trace and add some noise by shifting each duplicated contact for § seconds
where § is randomly chosen from [-4500, 4500]. Thus, the pairwise contacts in this data trace have
a high degree of repetitions.

MIT Reality [9]: We used the devicespan subtrace that records Bluetooth contacts among facul-
ties and students at MIT for approximately 9 months; this trace contains more than 20,000 devices.
The pairwise contacts in this data trace have a medium degree of repetitions, and it contains many
random contacts.

UMass DieselNet [4]: The trace contains bus-to-bus communication during the spring semester
of 2006. The trace contains 36 buses in total. Some of the pairwise contacts appear with a high
degree of repetitions but still contain random contacts and noise.

7.1 Simulation Setup

Due to the large difference in device popularity, the selection of sources and destinations for the
three traces are slightly different. In the Cambridge trace, the 30 most active devices are selected
as sources and destinations, whereas in the MIT trace, the destination for each message is selected
randomly from 20 most active devices during the lifetime of that message. There is no limitation
on selecting source and destination devices in the DieselNet trace since it contains only 36 de-
vices, and most of them have a relative high contact frequency. This selection avoids a negligible
delivery ratio caused by numerous inactive devices. We use the same message trace to compare
the performance of different protocols, and the message trace is generated as follows: each source
generates a message with a probability of 0.1 every 600 seconds, and the message destination is
randomly chosen from the set of destinations. The lifetime of each message varies from 4 hours to
1 week, and the size of a message varies from 2k bytes to 100k bytes.

To make fair comparisons, in each simulation run, the network is warmed up for 1 month with
no messages generated, and there is also no message generated in the last week to avoid any
wandering packet at the end of the simulation. All parameters in PROPHET are configured to
the recommended values [20]. Unless specially noted, the parameters in FGAR are configured as
follows: the sliding window is set to 4 weeks (672 slots, 1 hour per slot), the expected success
probability for each message is 0.9, and Ay in Equation (11) is set to 1. For Spray and Wait, we use
its binary version and run simulations with different settings on the maximum number of replicas
generated per message. We observe that Spray and Wait achieves the highest average message
delivery rate with the following settings and use these settings for comparison: 5 replicas per
message for Cambridge, 70 replicas per message for MIT Reality, and 10 replicas per message for
UMass DieselNet trace.

7.2 Impact of Protocol Parameter Configuration

7.2.1  Expected Message Success Probability. Message replication in FGAR is driven by the ex-
pected success probability. The higher the expected success probability, the more replicas may be
generated to fulfill the expected delivery rate. Figure 9(a) and (b) show the achieved average mes-
sage delivery rate and the message overhead with the variation of the expected success probability.
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Table 1. Storage Requirement for Contact Prediction

Cambridge MIT
Protocol Max (bytes) | Avg (bytes) Max (bytes) | Avg (bytes)
PRoPHET 2,230 119 99,970 420
3R 339,300 1,677 665,730 1,844
FGAR (672, 1) 7,830 387 42,480 74
FGAR (336, 2) 4,176 206 22,656 40
FGAR (168, 3) 2,349 116 12,744 23
FGAR (84, 4) 1,436 71 7,788 18

For the Cambridge trace, the achieved message delivery rate slightly increases with the increase
of the expected success probability and drops a little at the end. The message overhead slightly
increases, and the maximum is just 0.21. This is due to the regularity of the Cambridge trace as
it is produced by duplicating the original trace. Even though noise has been added, the contacts
between devices still exhibit strong weekly repeat patterns. Hence, most p, s in Equation (10) are
1, and very few replicas need to be generated. Since our approach can capture the contact patterns,
devices can propagate replicas to the right relays so that the message delivery rate and overhead
remain roughly constant. This demonstrates that our scheme can achieve superior performance
when contacts between devices exhibit a high degree of repeated patterns.

For the MIT trace, with the increase of the expected success probability, the achieved delivery
rate increases gradually except a sharp drop when the expected success probability is set to 1. The
message overhead is proportional to the expected success probability when it is no larger than
0.9. Beyond that, the message overhead increases significantly and reaches around 3.5 when the
expected success probability is 1. This phenomenon can be explained using Equation (10). Theo-
retically, P,, (k) can never reach 1 if all p!,s are smaller than 1. Since the MIT trace contains many
random contacts, most p’,s are smaller than 1. Thus, each source device continues spraying repli-
cas upon encountering good forwarders unless the expected success probability has been fulfilled.

7.2.2  Size of the Sliding Window. Figure 9(c) shows the impact of the sliding window size on the
achieved average message delivery rate. For the Cambridge trace, the size of the sliding window
does not have much impact on the average delivery rate. This is due to the regularity of this trace
since maintaining only 1 week of contact history is still able to precisely represent the device’s
contact patterns. For the MIT trace, the achieved average delivery rate improves with the increase
of the window size. Since contacts in this trace do not have perfect repeat patterns, a larger
sliding window can better represent the contact patterns and improve the accuracy of contact
prediction.

7.2.3  Weight on Contact History. In Equation (6), different slots in the sliding window can have
different weights in computing the contact probability. Figure 9(d) shows the achieved average
message delivery rate using different weighting schemes. For the Cambridge trace, there is no
significant difference for the two weighting schemes due to the regularity of this data trace. But
for the MIT Reality trace, a higher message delivery rate is achieved by giving larger weight to
more recent slots, as this can timely reflect changes on contact patterns.

7.3 Storage Requirement for Contact Prediction

Table 1 compares the storage requirement for contact prediction in different schemes in terms
of the maximum storage required for the busiest device and the average storage consumption for
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Fig. 9. The impact of the expected message delivery rate (a, b). The impact of window size (c). The impact
of weighting (d).

the entire population. Each device uses its MAC address (6 bytes) as its identity. In PROPHET,
each device needs to record the encounter probability (float type, 4 bytes) for each encountered
device. In FGAR, each device locally records the bit matrix, whereas in 3R, each device needs to
record the date and time for each contact. It can be seen from Table 1 that 3R has the largest storage
requirement, as it needs to store the information for each contact, and FGAR does not consume ex-
tremely large storage in comparison with PROPHET even though it maintains fine-grained contact
information. In addition, FGAR is able to consume less memory by characterizing the history into a
sparser sliding window, but the performance is just slightly degraded, as discussed in Section 7.2.2.
For the Cambridge trace, when L,, = 672 and L = 1, both the maximum and average storage re-
quirement for FGAR is around three times as that for PROPHET. For the case where L,, = 168 and
L¢ = 3, FGAR consumes roughly the same memory as PROPHET. For the MIT trace, both the max-
imum and average storage requirement of FGAR is much less than PRoPHET at all stages. This is
because the MIT trace contains a large number of inactive devices. Although PRoPHET only needs
to record the device address and its contact probability, a device has to keep the entire list from the
encountered devices, even though the records contain lots of the information for the devices it has
never seen. However, a device using FGAR only needs to maintain the history for its encountered
devices, and also the history is dumped if the previously encountered devices disappear for a long
time. Due to a huge difference in the population of two traces, the number of history records on
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Fig. 10. Performance of FG and FGAR: Cambridge trace (a, b) and MIT trace (c, d).

average is 87 per device when using PROPHET and 4.3 for FGAR in the Cambridge trace, whereas
it is 42.02 for PROPHET and 0.82 for FGAR using the MIT trace.

7.4 Comparison with Existing Schemes

In this section, we first show the advantages of dynamic message replication control. Figure 10
compares the performance improvement achieved by fine-grained contact characterization and
adaptive message replication. FG is a simplified version of FGAR by removing its replication con-
trol process. In the Cambridge trace, it can be seen that FGAR outperforms FG on delivery rate
when the memory buffer is small, and then they have the same performance when the buffer is
large enough. However, FG generates 24.6 times more message replicas than FGAR with a sufficient
memory buffer. Due to the lack of message replication control, the redundant message replicas con-
sume too much memory, which leads to the discarding of other packets due to memory overflow.
The lost packets will consequently result in the degradation of routing performance. In the MIT
trace, the performance gap is much smaller than that in the Cambridge trace. FGAR and FG have
a very close average message delivery rate for all memory settings, but FGAR generates only 1.7
replicas/message on average, whereas FG requires at least 11 replicas. This indicates that contact
prediction based on fine-grained history is reliable, and an intellectual message replication control
can remove unnecessary message copies, thus further enhancing the routing performance.

Figure 11 shows the comparison of our scheme with Epidemic, PROPHET, Spray and Wait, and
3R using the Cambridge, MIT, and DieselNet traces.
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Fig. 11. Performance of FGAR, Epidemic, PRoPHET, and 3R: Cambridge trace (a, b), MIT trace (c, d), and

DieselNet trace (e, f).

Cambridge Ttrace. Figure 11(a) and (b) show the average delivery rate and message overhead of
the five schemes by varying the size of the per-device message buffer. For Epidemic, the achieved
message delivery rate increases with the increase of message buffer size as it performs blind
flooding. For the other four schemes, the achieved message delivery rate first increases with the
increase of buffer size and then remains steady. This is because all four schemes control message
replication, and the message delivery rate cannot be further improved when the message buffer
is large enough to carry messages. It can be seen that both FGAR and 3R outperform PRoPHET
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and Spray and Wait for all buffer settings, especially when the message buffer is small. This is
because FGAR and 3R use fine-grained contraction history to predict future contacts, by which
the accuracy of contact prediction has been greatly improved. When the message buffer is set to
1M bytes/device, the average delivery rate achieved by FGAR is improved by 47% in comparison
with PRoPHET. It can be seen that FGAR outperforms 3R under all buffer settings due to the
delivery rate—driven message replication. However, it is worth noting that the message overhead
in FGAR is not significantly increased and remains very stable, as shown in Figure 11(b). When
the message buffer is set to 6M bytes/device, the message overhead of FGAR is only 0.09, whereas
Spray and Wait, PROPHET, and Epidemic have a message overhead of 2.9, 5, and 39, respectively.
This demonstrates that FGAR can achieve remarkable performance when devices are memory
constrained and have regular contact patterns.

MIT trace. Figure 11(c) and (d) show the performance of the five schemes using the MIT Reality
trace. Generally speaking, the average message delivery rate and message overhead have the same
trends as those in the Cambridge trace. FGAR achieves a higher average delivery rate than the other
schemes in most cases but with extremely low overhead. When the message buffer is set to 4M
bytes/device, the average delivery rate achieved by FGAR is improved by 15.3% in comparison with
PRoPHET, but the message overhead in PROPHET is more than 38 times that in FGAR. 3R achieves
roughly the same message delivery rate as PROPHET when the message buffer is no larger than
4M bytes/device but performs much worse than PROPHET when the message buffer is large. This
is because the MIT trace contains numerous random contacts that show no discernible patterns,
and 3R keeps only a single copy for each message, which is not enough to achieve a high message
delivery rate. When the message buffer is set to 10M bytes/device, Epidemic and PRoOPHET perform
slightly better than FGAR, but this slight improvement was achieved by a significant increase in
message overhead. FGAR outperforms Spray and Wait at all memory cases, whereas Spray and
Wait generates at least 20 times more message replicas than FGAR.

UMass DieselNet trace. Figure 11(e) and (f) show the performance of the five schemes using the
DieselNet trace. It can be seen that the overall trends of both achieved delivery rate and mes-
sage overhead have the same appearance as in the previous two traces. FGAR still gains a higher
achieved delivery rate than the other four protocols when devices have a small message buffer.
When the memory buffer is set to 2M bytes/device, the delivery rate of FGAR is increased 9.8%
over PROPHET and 10.1% better in comparison with Spray and Wait. The message overhead for
FGAR at this stage is only 1.72, whereas it is 5.12 for PROPHET and 3.99 for Spray and Wait. This
is because FGAR takes advantage of fine-grained historical information characterization for its ac-
curate prediction, and the adaptive message replication can intellectually eliminate unnecessary
message replicas. Due to the limitation on the number of message replicas in Spray and Wait, it
always has a lower message overhead than PROPHET. As the memory buffer increases, Epidemic
and PRoPHET take advantage of flooding. Hence, it slightly outperforms FGAR. However, Epi-
demic generates 14.65 replicas per message on average, and PRoPHET has 11.8 for this, whereas
it is only 3.37 for FGAR.

8 CONCLUSIONS

Mobile opportunistic networking is a promising technology that supplements the existing cellular
and WiFi networks to provide desirable service for smart and connected communities. To address
the challenge of routing messages in mobile opportunistic networks, we propose an efficient rout-
ing scheme called FGAR that can achieve a high message delivery rate with extremely low message
overhead. In FGAR, the accuracy of contact prediction is improved by characterizing contact his-
tory in a fine-grained manner, and message replication is controlled in a decentralized way by
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taking into account the expected message delivery rate, the replication history, and the real-time
network conditions. Trace-based simulations demonstrate that FGAR can achieve remarkable per-
formance when contacts between devices have a high degree of repetitions, and it performs better
than other schemes even when the contacts between devices are more random, especially when the
message buffer size is small. Future work will investigate more efficient solutions to store the bit
matrix to further reduce the storage requirement for maintaining fine-grained contact information.
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